

Paraconsistency and Program Logics

Luís S. Barbosa

(joint work with J. Cunha & A. Madeira)

Universidade do Minho

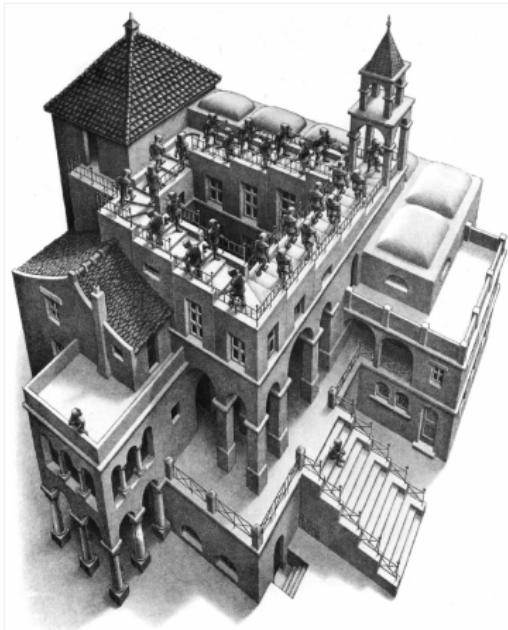
DaLí 2025

6th Workshop on Dynamic Logic - New Trends and Applications
Shaanxi Normal University, Xi'an, 20-21 October, 2025


What's up on the table?

The need to **articulate different perspectives** on complex information:

local consistency



global inconsistency

... and why we should care?

Information (reality?) is not what we thought it was ...

M. C. Escher, *Ascending and descending*

Vagueness and contradiction

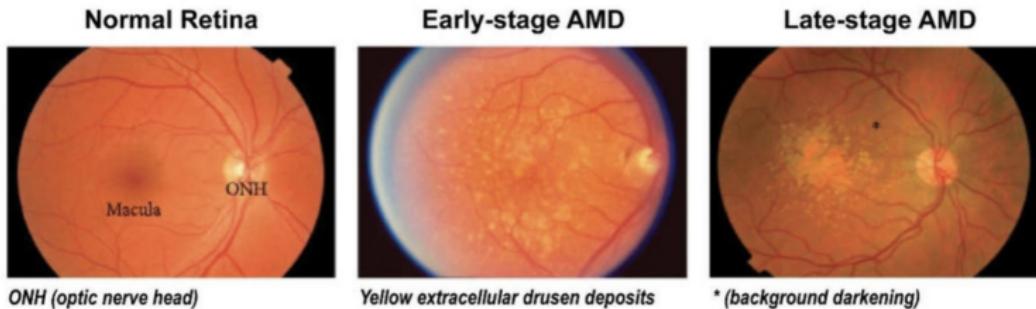
In particular, **modelling contexts** in which bivalent, or even probabilistic reasoning is not enough, entail the need for capturing both

- lack of information (vagueness or uncertainty)
- excess of information (potential inconsistency)

Vagueness and contradiction

Vagueness is addressed in **fuzzy logics**,

but potentially contradictory information arises in a number of scenarios.
(e.g. knowledge representation, data integration, etc.)


Two real-world scenarios

- Inference over huge data sets for Age-related Macular Degeneration (AMD) diagnosis
- Identification of success factors in inter-agency partnerships

Age-related macular degeneration (AMD) diagnosis

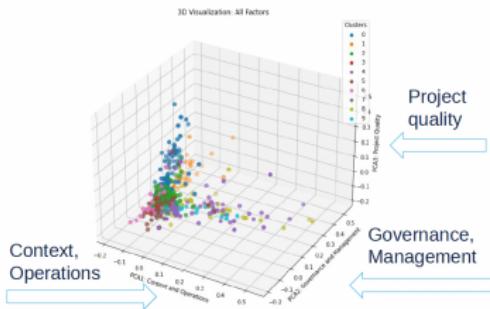
A disease of the macula, leading cause of vision loss in people over 55.

- multifactorial disease, with a complex pathophysiology, for which the onset and progression are different, with different risk factors, environmental and genetic, contributing.
- progression not well understood (e.g. different rates/patterns for similar patients and even between the two eyes of the same patient).

Age-related macular degeneration (AMD) diagnosis

- Highly **heterogeneous** data collected in large epidemiological studies over long time spans
- Crucial role played by **expert assessment**: the evidence level assigned to each data factor (e.g. an image) as an enabler for a specific future development of the disease may vary from an expert to another, leading to complex data consolidation processes.
- Thus, **potentially contradicting** medical judgments cannot be swept under the carpet.

A recently funded proposal supported by a leading eye lab to develop an **inference framework** able to **reason about contradictory, or even inconsistent data in a sound and effective way**.


association for
innovation and biomedical
research on light and image

International inter-agency partnerships

19% - 25% **international partnerships** are unsuccessful, translating into diminished cooperation impact and public expenditure inefficiency.

- Data collected through text mining over a **huge documental fund**, resorting to **different techniques** (XAI, neural nets, etc)
- lead to the identification of 735 classes with **opposite-polarity weights** from different machine learning models

Cluster ID	Number of Factors	Topics
0	67	Quality-related issues
1	32	Governance and Management frameworks
2	343	Bulky cluster (sub-clusters)
3	46	Mutual commitment
4	61	Country-level capacity
5	42	Staff
6	23	Previous collaboration
7	23	Cost-benefit, cost coverage
8	40	Country-level strategy
9	33	Continued relevance in context

Success factors identification in inter-agency partnerships

factor ID	factor text	number of semantically similar corpus sentences	
753-factor list	24-factor list	positive polarity	negative polarity
18	0 mechanisms for expression of stakeholder viewpoint on the partnership	45	43
51	1 gender-sensitive equity indicators measuring reach and benefit for disadvantaged groups (PPP)	54	52
83	2 capacity building	28	37
152	3 local borrower performance history	44	50
157	4 staff requirement and capacity assessment	48	52
162	5 clear, result-oriented, competitive procurement processes, bidding procedures and contracts	OOR	28
192	6 partner performance assessment in project completion reports or evaluation reports	84	81
219	7 project processing and implementation capacity	31	OOR
228	8 risk identification, risk management framework at the strategic and project level from the outset	OOR	40
263	9 stakeholder involvement	68	72
300	10 capacity building enabling full participation	40	47
306	11 focus on outcomes in the partnership strategy	29	OOR
308	12 specific guidance on approaches and outcomes in the partnership strategy	33	35
313	13 cost-benefit analysis	44	32
379	14 early-on attention to sustainability of project benefits	57	72
440	15 donor supportive of the aims and operations of the partnership in the local context	28	40
463	16 capacity building in local partners	OOR	30
468	17 quality of project monitoring and evaluation systems design	61	54
550	18 lack of harmonization of procurement and disbursement procedures	59	69
557	19 outdated procurement procedures	45	58
559	20 rigid and diverging procedures for procurement and disbursement	27	OOR
602	21 complexity of procurement procedures	OOR	28
623	22 lack of stakeholder involvement during initial processes	31	OOR
656	23 involvement of stakeholder country in the design of the partnership or of its programmes, for ownership	32	34

Joint project to design a inference engine to predict partnership performance from ex-ante documents

Summing up: Data is a mined field

- Not only the **values and structure** of data changes but also the **logic** under which this information needs to be understood changes as well
- Informational states may exhibit
 - **potentially inconsistent** (or partially consistent) data,
 - reflecting the **diversity of judgements** (e.g. from different domain experts).

Summing up: Data is a mined field

- Moreover, they may be linked
 - **positively** (witnessing e.g. the existence of a relationship) and
 - **negatively** (recording whatever prevents such a relationship)
- Finally, the weights of such transitions are, in most cases, **non-complementary**, opening an inference arena encompassing both classical, vague, and even (controlled forms of) inconsistent reasoning.

Paraconsistent Logic

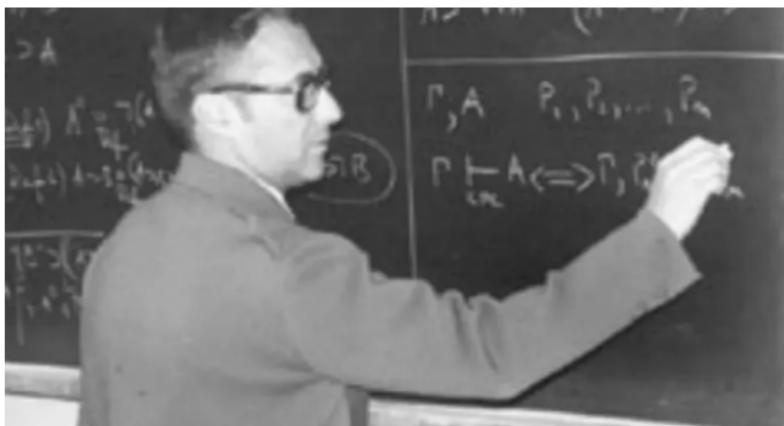
Originally developed in Latin America in 50's, mainly by F. Asenjo and Newton da Costa, accommodates inconsistency **in a controlled way**, treating **inconsistent information as potentially informative**.

Paraconsistency is the study of logical systems in which the presence of a contradiction does not imply triviality, therefore avoiding the **principle of explosion** according to which any statement can be proven from a contradiction.

Separating

contradiction from deductive triviality
inconsistency from contradiction
consistency from absence of contradiction

A brief history of an idea


- 1910 [J. Łukasiewicz](#) and [N. Vasiliev](#): denying the law of noncontradiction would lead to still meaningful, although non-Aristotelian logics
- [S. Jaśkowski](#)'s study of empirical theories including contradictory assumptions
- 1958: [Newton da Costa](#) (1929 - 2024) seminal paper

Nota sobre o conceito de contradição.

Anuario da Sociedade Paranaense de Matematica, 2 (1), 1958.

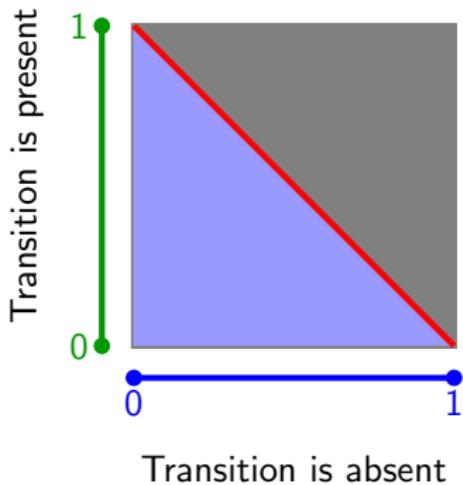
paved the way to the remarkable influence of the [Brazilian School](#)

A brief history of an idea

"I decided to do it the other way round: mathematics with contradictions. Existence in mathematics means anything but the absence of contradiction. Contradictions begin to appear at the edges of mathematics. There are always problems."

[Newton da Costa, available from youtube, 2019]

A brief history of an idea


- A main development in the Brazilian School led to [the logic of formal inconsistency](#) (LFI) in which the consistency of a sentence is made explicit by a unary operator
(W. Carnielli, M. E. Coniglio, J. Marcos)
- 1990: *Mathematical Reviews* added a new entry [03B53](#) entitled [Paraconsistent Logic](#) later expanded to [Logics admitting inconsistency](#)
- ... and [applications](#) pop out: from Philosophy of Science to Mathematics, from Economics, to Quantum Mechanics.
- ... and in Computer Science: AI, databases, semantics of concurrency, quantum computation ...

A modelling tool

The approach

- Transition systems with both **positive** and **negative** accessibility relations, with **non complementary weights**:
 - one weighting the possibility of a transition to be present (e.g. the state remaining coherent),
 - the other weighting the possibility of being absent (i.e. becoming unstable)
- used in software modelling and as Kripke frames for a modal logic

The basic structure

How is information weighted?

Underlying semantic structure

- A **residuated lattice**, i.e. a bounded lattice $\mathbf{A} = \langle A, \sqcap, \sqcup, 1, 0 \rangle$ equipped with a monoid $\langle A, \odot, e \rangle$ such that \odot has a right adjoint,

$$a \odot b \leq c \Leftrightarrow b \leq a \rightarrow c$$

- st the **monoidal operation** \odot coincides with **meet** \sqcap
- plus a **prelinearity** condition:

$$(a \rightarrow b) \sqcup (b \rightarrow a) = 1$$

(iMTL-algebra, after *integral monoidal t-norm based logic*)

Some examples

$$\mathcal{S} = \langle \{\perp, u, \top\}, \wedge_3, \vee_3, \top, \perp, \rightarrow_3 \rangle$$

\vee_3	\perp	u	\top	\wedge_3	\perp	u	\top
\perp	\perp	u	\top	\perp	\perp	\perp	\perp
u	u	u	\top	u	\perp	u	u
\top	\top	\top	\top	\top	\perp	u	\top

\rightarrow_3	\perp	u	\top
\perp	\top	\top	\top
u	\perp	\top	\top
\top	\perp	u	\top

$$\ddot{\mathbf{G}} = \langle 0..1, \min, \max, 0, 1, \rightarrow \rangle \text{ (Gödel)}$$

$$a \rightarrow b = \begin{cases} 1, & \text{if } a \leq b \\ b, & \text{otherwise} \end{cases}$$

How is information weighted?

... endowed with a metric $d : A \times A \rightarrow \mathbb{R}^+$

Examples

2 and 3

2		3		
d	\perp	u	\top	
\perp	0	1	2	
u	1	0	1	
\top	2	1	0	

$\ddot{\mathbf{G}}$ (Gödel)

$$\ddot{\mathbf{G}} = \langle [0, 1], \min, \max, 0, 1, \rightarrow, d \rangle$$

where $d(x, y) = y - x$

Computing with pairs of weights

A **twisted structure**, obtained through the direct product of A and its order dual:

$$A^2 = \langle A \times A, \sqcap, \sqcup, \Rightarrow, // \rangle$$

- $(a, b) \sqcap (c, d) = (a \sqcap c, b \sqcup d)$
- $(a, b) \sqcup (c, d) = (a \sqcup c, b \sqcap d)$
- $(a, b) \Rightarrow (c, d) = ((a \rightarrow c) \sqcap (d \rightarrow b), a \sqcap d)$
- $//(a, b) = (b, a)$

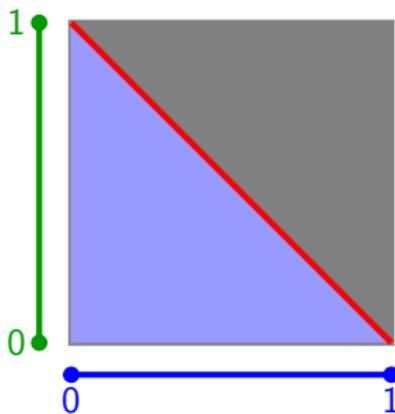
with

$$(a, b) \leq (c, d) \text{ iff } a \leq c \text{ and } b \geq d$$

... and a metric $D((a, b), (c, d)) = \sqrt{d(a, c)^2 + d(b, d)^2}$

Computing with pairs of weights

(paraconsistent):


$$\Delta_P = \{(a, b) | D((a, b), (1, 1)) \leq D((a, b), (0, 0))\}$$

(consistent):

$$\Delta_C = \{(a, b) | D((a, b), (0, 0)) \leq D((a, b), (1, 1))\}$$

(strictly consistent):

$$\Delta = \Delta_P \cap \Delta_C$$

Computing with pairs of weights

Alert: Adjunction $\sqcap \dashv \rightarrow$ does not lift

i.e. $(a, b) \sqcap (c, d) \leqslant (e, f)$ iff $(c, d) \leqslant (a, b) \Rightarrow (e, f)$ fails:

e.g. for $(a, b) = (0.8, 0.4)$, $(c, d) = (0.5, 0.2)$ and $(e, f) = (0.6, 0.3)$,

$$(a, b) \sqcap (c, d) = (\min\{0.8, 0.5\}, \max\{0.4, 0.2\}) = (0.5, 0.4)$$

$$(a, b) \Rightarrow (e, f) = (\min\{0.8 \rightarrow 0.6, 0.3 \rightarrow 0.4\}, \min\{0.8, 0.3\}) = (0.6, 0.3)$$

Thus,

$$(0.5, 0.4) \leqslant (0.6, 0.3) \text{ but } (0.5, 0.2) \not\leqslant (0.6, 0.3)$$

but is recovered replacing \sqcap by

$$(a, b) \otimes (c, d) = (a \sqcap c, (a \rightarrow d) \sqcap (c \rightarrow b))$$

$$(a, b) \otimes (c, d) \leqslant (e, f) \text{ iff } (c, d) \leqslant (a, b) \Rightarrow (e, f)$$

Some properties

- The twist construction brings an **involution**
- and keeps the **complete, universally distributive** lattice structure, as the product of two such lattices

Some properties

$$\mathbin{\textstyle \parallel\!\!\parallel} (\mathbin{\textstyle \parallel\!\!\parallel} (a, b) \mathbin{\textstyle \parallel\!\!\parallel} \mathbin{\textstyle \parallel\!\!\parallel} (c, d)) = (a, b) \mathbin{\textstyle \parallel\!\!\parallel} (c, d)$$

$$\mathbin{\textstyle \parallel\!\!\parallel} \left(\bigwedge_{i=1}^n (a_i, b_i) \right) = \bigvee_{i=1}^n \mathbin{\textstyle \parallel\!\!\parallel} (a_i, b_i)$$

$$\mathbin{\textstyle \parallel\!\!\parallel} \left((a, b) \Rightarrow \mathbin{\textstyle \parallel\!\!\parallel} (c, d) \right) = (a, b) \otimes (c, d)$$

Some properties

...

if $(a', b') \leq (a, b)$ and $(c, d) \leq (c', d')$ then $(a, b)[\Rightarrow | \otimes](c, d) \leq (a', b') \Rightarrow (c', d')$

$$(a, b) \otimes \left((c, d) \sqcup \sqcup (e, f) \right) = \left((a, b) \otimes (c, d) \right) \sqcup \left((a, b) \otimes (e, f) \right)$$

$$(a, b) \otimes \left((c, d) \sqcap \sqcap (e, f) \right) \leq \left((a, b) \otimes (c, d) \right) \sqcap \left((a, b) \otimes (e, f) \right)$$

$$(a, b) \otimes \left((c, d) \Rightarrow (e, f) \right) \leq (c, d) \Rightarrow \left((a, b) \otimes (e, f) \right)$$

$$(a, b) \Rightarrow \left((c, d) \Rightarrow (e, f) \right) \leq \left((a, b) \otimes (c, d) \right) \Rightarrow (e, f)$$

$$(a, b) \otimes \left((c, d) \Rightarrow (e, f) \right) \leq \left((a, b) \Rightarrow (c, d) \right) \Rightarrow (e, f)$$

$$(a, b) \Rightarrow \left((c, d) \Rightarrow (e, f) \right) \leq (c, d) \Rightarrow \left((a, b) \Rightarrow (e, f) \right)$$

...

Paraconsistent Labelled Transition Systems

The approach

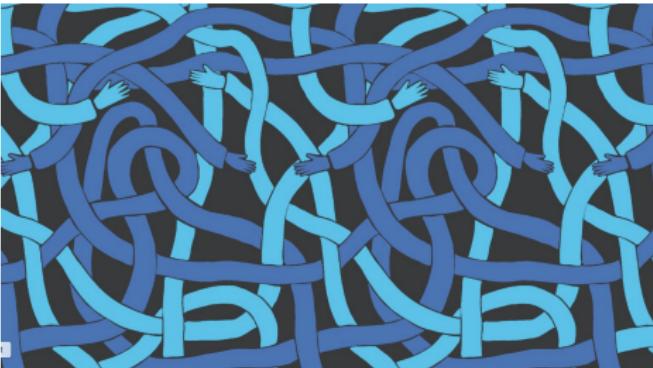
- Introduce **labels** from a set of identifiers *Act*, and an **initial state**
- Define **morphism** to organise PLTS over **A** into a **category**
- Derive an algebra, to get **new PLTS from old**, from the underlying categorical structure
(... possibly leading to a **language** and a **dynamic logic**)
- Develop a **multimodal logic** (*à la* Hennessy-Milner) for PLTS

Paraconsistent Labelled Transition Systems

A PLTS over a iMTL-algebra A , and a set of atomic actions Act is a structure

$$T = \langle W, i, R \rangle$$

where,


- W is a non-empty set of states
- $i \in W$ is the initial state
- $R = (R_a: W \times W \rightarrow A \times A)_{a \in Act}$ is an Act -indexed family of functions

$$R_a(w_1, w_2) = (\alpha, \beta)$$

with α weighting evidence of the transition through a and β its absence.

Where can we go from here?

- **Modelling** (Programming): requires a notion of **morphism** to discuss **compositionality**
- **Reasoning** (Verification): requires extension to a **Kripke structure**, a notion of **(bi)simulation** and a **logic**

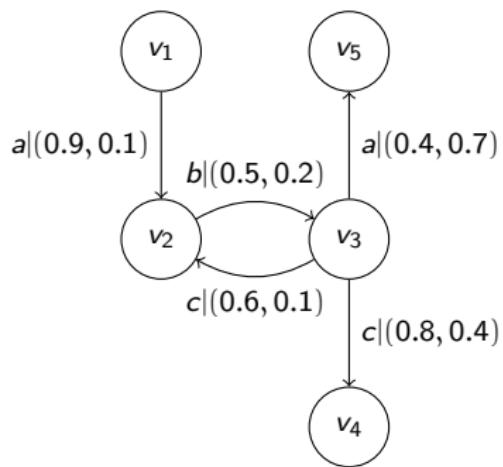
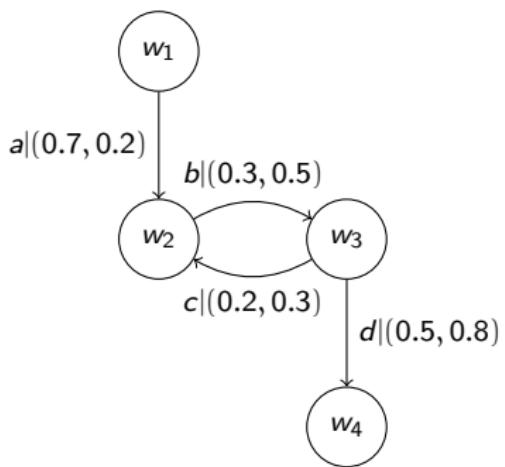
Morphism

$(h, \lambda) : T \rightarrow T'$

- $h : W \rightarrow W'$
- $\lambda : Act \rightarrow_{\perp} Act'$

such that

- $h(i) = i'$ and
- for any $a \in Act$,



$$R_a(w, w') \leq R'_{\lambda(a)}(h(w), h(w'))$$

where $R^{\perp} = R \cup R_{\perp}$ with $R_{\perp}(w, w) = (1, 0)$ for any state $w \in W$

Morphism

Example

(h, id) with $h = \{w_1 \mapsto v_1, w_2 \mapsto v_2, w_3 \mapsto v_3, w_4 \mapsto v_4\}$

Kripke Structures & (Bi)simulation

A PLTS $T = \langle W, i, R \rangle$ over a iMTL-algebra \mathbf{A} , and a set of atomic actions Act , generates a Kripke structure

$$\langle W, R, V \rangle$$

where

$$V : W \times Prop \rightarrow A \times A$$

is a valuation function over a set $Prop$ of proposition symbols.

Kripke Structures & (Bi)simulation

The crisp case

$S \subseteq W \times W'$ is a **simulation** if, for all $p \in Prop$, $a \in Act$,

if wSw' then

- $V(w, p) \leq V'(w', p)$
- If $R_a(w, v) = (\alpha, \beta)$ then,

$\exists_{w' \in W'}. R_a(w', v') = (\delta, \gamma)$ and $w'Sv'$ and $(\alpha, \beta) \leq (\delta, \gamma)$

Kripke Structures & (Bi)simulation

The crisp case

$S \subseteq W \times W'$ is a **simulation** if, for all $p \in Prop$, $a \in Act$, if wSw' then

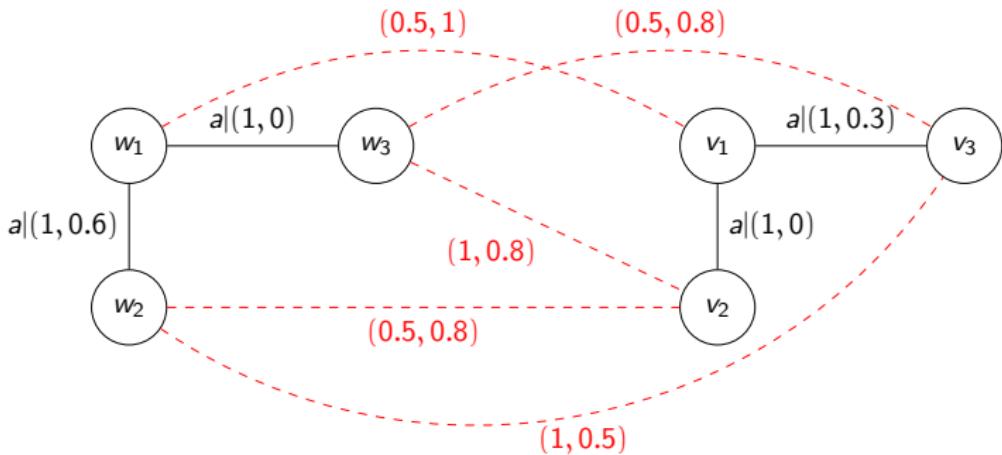
- $V(w, p) \leq V'(w', p)$
- If $R_a(w, v) = (\alpha, \beta)$ then,

$$\exists_{w' \in W'}. R_a(w', v') = (\delta, \gamma) \text{ and } w'Sv' \text{ and } (\alpha, \beta) \leq (\delta, \gamma)$$

The graded case

$G : W \times W' \rightarrow A \times A$ is a **graded simulation** if, for all $p \in Prop$, $a \in Act$,

- $G(w, w') \leq (V(w, p) \Rightarrow V'(w', p))$
- $\exists_{v' \in W'} (G(w, w') \otimes R_a(w, v)) \leq (R'_a(w', v') \otimes G(v, v'))$


Kripke Structures & (Bi)simulation

Graded bisimulation

$G : W \times W' \rightarrow A \times A$ is a **graded bisimulation** if, for all $p \in Prop$, $a \in Act$,

- $G(w, w') \leqslant (V(w, p) \Leftrightarrow V'(w', p))$
- $\exists_{v' \in W'} (G(w, w') \otimes R_a(w, v)) \leqslant (R'_a(w', v') \otimes G(v, v'))$
- $\exists_{v \in W} (G(w, w') \otimes R'_a(w', v')) \leqslant (R_a(w, v) \otimes G(v, v'))$

Kripke Structures & (Bi)simulation

where

$$V(w_1, p) = V'(v_1, p) = 1, 1$$

$$V(w_2, p) = V'(v_3, p) = (1, 0.5)$$

$$V(w_3, p) = V'(v_2, p) = (0.8, 0.8)$$

Kripke Structures & (Bi)simulation


Alert: Crisp (bi)simulations are not necessarily graded

i.e. a **crisp** (bi)simulation S st wSw' does not entail the existence of a graded one G st $G(w, w') = (1, 0)$.

- Conditions enforcing coincidence are identified for both simulation and bisimulation
- This helps to explain some weird behaviour of graded behavioural relations.

Kripke Structures & (Bi)simulation

Example

with $V(w, p) = V'(w', p) = (0.2, 0.2)$.

Relation $G(w, w') = (1, 0)$ is **not** a graded simulation:

$$\begin{aligned}(1, 0) &\not\leq (0.2, 0.2) \Rightarrow (0.2, 0.2) \\ &\not\leq (1, 0.2)\end{aligned}$$

Paraconsistency for the working software engineer

- **Modelling** (Programming): New PLTS from old
 - .. exploring the underlying category Pt_A of PLTS and their morphisms
- **Reasoning** (Verification): A multimodal logic $PML(A)$
 - ... action-indexed modalities interpreted over paraconsistent Kripke structures

New PLTS from old

Restriction and relabeling

Let T be a PLTS. Then,

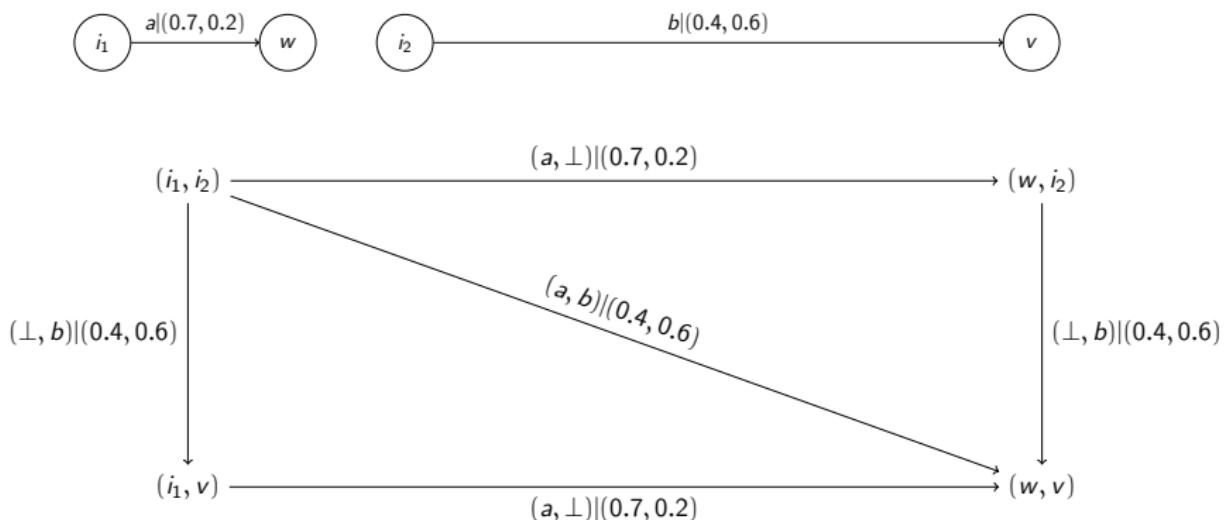
- **Restriction:** for $\lambda : Act' \rightarrow Act$ an inclusion, $T \upharpoonright \lambda$ is a Cartesian lifting in Pt_A , i.e., any other morphism whose action component is λ factors through the restriction morphism from $T \upharpoonright \lambda$ to T .
- **Relabelling:** for $\lambda : Act' \rightarrow Act$ total, $T\{\lambda\}$ is a co-Cartesian lifting in Pt_A

New PLTS from old

New PLTS from old: Parallel Composition

$T_1 \times T_2$ is the categorical product in Pt_A :

$$T_1 \times T_2 = \langle W_1 \times W_2, (i_1, i_2), R \rangle$$

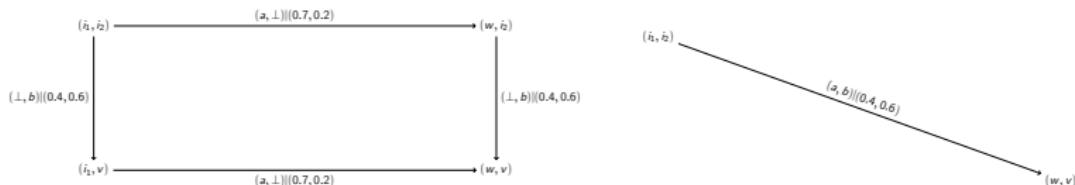

over

$$Act_1 \times_{\perp} Act_2 = \{(a, \perp) \mid a \in Act_1\} \cup \{(\perp, b) \mid b \in Act_2\} \cup \{(a, b) \mid a \in Act_1, b \in Act_2\}$$

such that

$$\begin{aligned} R_{(a,b)}((w_1, w_2), (v_1, v_2)) = (\alpha, \beta) \text{ iff} \\ (R_1)_a^{\perp}(w_1, v_1) = (\alpha_1, \beta_1) \text{ and} \\ (R_2)_b^{\perp}(w_2, v_2) = (\alpha_2, \beta_2) \text{ and} \\ (\alpha, \beta) = (\alpha_1, \alpha_2) \bowtie (\beta_1, \beta_2) \end{aligned}$$

Example


New PLTS from old

Interleaving: $T_1 \parallel T_2 = (T_1 \times T_2) \upharpoonright \lambda$

with the inclusion $\lambda : \{(a, \perp) \mid a \in Act_1\} \cup \{(\perp, b) \mid b \in Act_2\} \rightarrow Act_1 \times_{\perp} Act_2$

Synchronous product: $T_1 \otimes T_2 = (T_1 \times T_2) \upharpoonright \lambda$

taking $\{(a, b) \mid a \in Act_1 \text{ and } b \in Act_2\}$ as the domain of λ

$T_1 \parallel T_2$

$T_1 \otimes T_2$

New PLTS from old

Choice

$T_1 + T_2$ is the categorical coproduct in Pt_A :

$$T_1 + T_2 = \langle W, (i_1, i_2), R \rangle$$

over $Act = Act_1 \cup Act_2$, where

- $W = (W_1 \times \{i_2\}) \cup (\{i_1\} \times W_2)$
- $R_a((w_1, w_2), (v_1, v_2)) = (\alpha, \beta)$ iff
 $(R_1)_a(w_1, v_1) = (\alpha, \beta)$ or $(R_2)_a(w_2, v_2) = (\alpha, \beta)$

$$(i_1, v) \xleftarrow{b|(0.4, 0.6)} (i_1, i_2) \xrightarrow{a|(0.7, 0.2)} (w, i_2)$$

New PLTS from old

Other Operators

- Sequential composition as **prefixing**
- Functorial extension of operations from the underlying iMTL-algebra (e.g. to operate on weights)

... leading to a sort of **(paraconsistent) process algebra**

PML(A): A multimodal logic for PLTS

Given an iMTL-algebra \mathbf{A} , a set of proposition symbols $Prop$ and a set of action symbols Act :

$$\varphi ::= \perp \mid p \mid \neg \varphi \mid \varphi \wedge \varphi \mid [a]\varphi$$

where $p \in Prop$ and $a \in Act$.

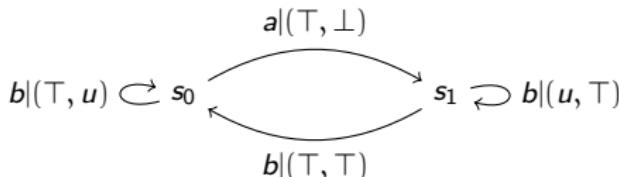
Abbreviations:

- $\top = \neg \perp$
- $\varphi \vee \varphi' = \neg(\neg \varphi \wedge \neg \varphi')$
- $\varphi \triangleright \varphi' = \neg \varphi \vee \varphi'$
- $\varphi \triangleleft \varphi' = \varphi \triangleright \varphi' \wedge \varphi' \triangleright \varphi$
- $\langle a \rangle \varphi = \neg [a] \neg \varphi$

The logic $PML(\mathbf{A})$

Satisfaction: $\models : M \times \text{Sen}(\text{Prop}, \text{Act}) \rightarrow A \times A$

$$(M \models \varphi) = \bigcap_{w \in W} (M, w \models \varphi)$$


- $(M, w \models \perp) = (0, 1)$
- $(M, w \models p) = V(w, p)$
- $(M, w \models \neg\varphi) = // (M, w \models \varphi)$
- $(M, w \models \varphi \wedge \varphi') = (M, w \models \varphi) \sqcap (M, w \models \varphi')$
- $(M, w \models [a]\varphi) = \bigcap_{v \in W} (R_a(w, v) \Rightarrow M, v \models \varphi)$

The logic $PML(\mathbf{A})$

Deriving $\langle a \rangle \varphi$ (the role of the adjunction)

$$\begin{aligned}(M, w \models \langle a \rangle \varphi) &= (M, w \models \neg[a] \neg \varphi) \\&= // (M, w \models [a] \neg \varphi) \\&= // \left(\bigwedge_{v \in W} \left(R_a(w, v) \Rightarrow (M, v \models \neg \varphi) \right) \right) \\&= // \left(\bigwedge_{v \in W} \left(R_a(w, v) \Rightarrow // (M, v \models \varphi) \right) \right) \\&= \bigsqcup_{v \in W} // \left(R_a(w, v) \Rightarrow // (M, v \models \varphi) \right) \\&= \bigsqcup_{v \in W} \left(R_a(w, v) \otimes (M, v \models \varphi) \right)\end{aligned}$$

Example over 3

V	p	q	r
s_0	(\top, \top)	(\perp, u)	(u, u)
s_1	(\perp, u)	(\perp, \perp)	(u, u)

$$M, s_1 \models r \triangleright (p \vee q)$$

$$\begin{aligned}
 M, s_0 \models r \triangleright (p \vee q) &= // (M, s_0 \models r) \sqcup (M, s_0 \models (p \vee q)) \\
 &= // V(s_0, r) \sqcup (V(s_0, p) \sqcup V(s_0, q)) \\
 &= (u, u) \sqcup (\top, \top) \sqcup (\perp, u) \\
 &= (u \vee_3 \top \vee_3 \perp, u \wedge_3 \top \wedge_3 u) \\
 &= (\top, u)
 \end{aligned}$$

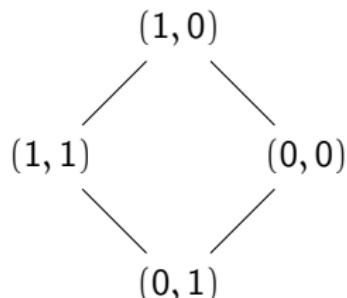
Example over 3

$$M, s_1 \models \langle b \rangle p$$

$$\begin{aligned} M, s_1 \models \langle b \rangle p &= M, s_1 \models // [b] // p \\ &= // \left(\bigcap_{s \in W} \hat{R}_b(s_1, s) \Rightarrow // (M, s \models p) \right) \\ &= // \left(\left(R_b(s_1, s_0) \Rightarrow // V(s_0, p) \right) \sqcap \left(R_b(s_1, s_1) \Rightarrow // V(s_1, p) \right) \right) \\ &= // \left(\left((\top, \top) \Rightarrow (\top, \top) \right) \sqcap \left((u, \top) \Rightarrow (u, \perp) \right) \right) \\ &= // (\top \wedge_3 \top, \top \vee_3 \perp) \\ &= (\top, \top) \end{aligned}$$

Bisimulation and Modal Invariance

- S crisp bisimulation:


$$\langle w, w' \rangle \in S \text{ entails } (M, w \models \varphi) = (M', w' \models \varphi)$$

- G graded bisimulation:

$$G(w, w') \leq \left((M, w \models \varphi) \Leftrightarrow (M', w' \models \varphi) \right)$$

Paraconsistent Structures and their Logics

- Generalising Belnap-Dunn *FOUR*
- to PLTS parametric on a iMTL-algebra, and corresponding twisted structure,
- combinators and a multimodal logic

- Cruz, Madeira & Barbosa: [A logic for paraconsistent transition systems](#) *Non-Classical Logics: Theory and Applications*, 2022.
- Cruz, Madeira & Barbosa: [Paraconsistent transition systems](#) LSFA'22 (Logical and Semantic Frameworks with Applications), 2022.
- Barbosa & Madeira: [Capturing qubit decoherence through paraconsistent transition systems](#). Engineering of Quantum Programming , IEEE 2023
- **★ Cunha, Madeira & Barbosa: [Paraconsistent transition structures: compositional principles and a modal logic](#)**. *Math. Struc. Comp. Sci.*, Elsevier (in print) 2025

Structured Specification and Development

- Instantiation of [Sannella and Tarlecki's stepwise implementation](#) for the structured specification of PLTS from their abstract design down to the concrete implementation stage.
- Structured specification logic *à la* CASL
- Paraconsistent [institution](#) parametric on a twisted structure enriched with regular modalities

- Cunha, Madeira & Barbosa: [Stepwise Development of Paraconsistent Processes](#) TASE'23 (Theoretical Aspects of Software Engineering), 2023.
- Cunha, Madeira & Barbosa: [Structured specification of paraconsistent transition systems](#) FSEN'23 (Fundamentals of Software Engineering), 2023.
- ****** Cunha, Madeira & Barbosa: [Specification of paraconsistent transition systems, revisited](#). *Sci Comp Programming*, 240, Elsevier, 2024

PKAT: The algebraic counterpart

- Study **paraconsistent KAT** to reason about uncertain or inconsistent computations in a (quasi)-equational way
- made concrete in an algebra of paraconsistent relations

- Cunha, Madeira & Barbosa: [Paraconsistent relations as a variant of Kleene algebras](#)
LSFA'24 (in print), 2024.

Future/current research

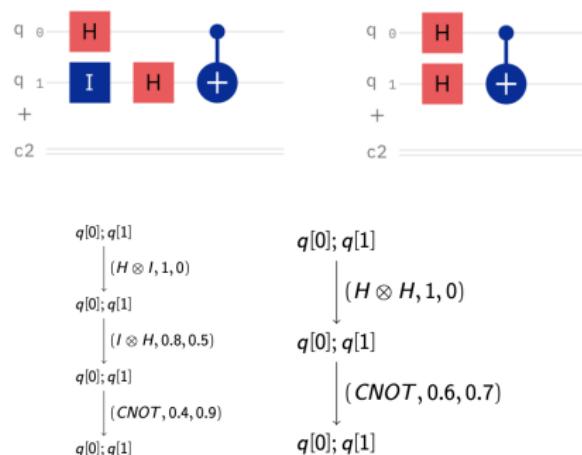
A lot remains to be done ...

- Simulator and **model finder**
- Classical and **graded soundness**
- Extensions to **reactive** transition structures
- **Coalgebraic** rendering of PLTS: observational equivalences and modal logics **for free** ...
- **Dynamic logics for paraconsistent programming**, applied to **NISQ** (noisy intermediate-scale quantum) programs

Dynamic logics for NISQ quantum programs

Context

- **LQP** (Smets & Baltag, 2006)
 - the quantum 'version' of propositional dynamic logic
- **PLQP & Company** (Smets & Baltag, 2014)
 - with a probability modality to capture the success of a test, allowing for going beyond 'qualitative' properties.


aiming at

- handling **hybrid** (quantum/classical) programs
- ... and dealing with **circuit decoherence profiles** and **noisy gates**

Dynamic logics for NISQ quantum programs

Exercise with gates decoherence profiles

... leading, at each computational stage, to throughput/decoherence measures which are not 'complementary' in any sense...

Concluding: Paraconsistency is everywhere ...

When the **hills** are flat,
The **rivers** are all dry.

When it **thunders** in winter,
When it **snows** in summer.
When **heaven** and **earth** mingle,

Not till then will I part.

Yuefu poems, Han dynasty
(206 BC - 220 AD)

